
Penetration Test Report

Open Tech Fund

V 1.0
Diemen, September 13th, 2018
Confidential

Document Properties

Client Open Tech Fund

Title Penetration Test Report

Target github.com/measurement-kit/libndt git revision:
89193025a4c59793b2f03d590efdaaea20c8cf58

Version 1.0

Pentester Stefan Marsiske

Authors Stefan Marsiske, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 September 10th, 2018 Stefan Marsiske Main report

0.2 September 13th, 2018 Marcus Bointon Review

1.0 September 13th, 2018 Marcus Bointon Final version

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 4

1.6.1 Findings by Threat Level 5

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 6

2 Methodology 7
2.1 Planning 7

2.2 Risk Classification 7

3 Reconnaissance and Fingerprinting 9
3.1 Automated Scans 9

4 Pentest Technical Summary 10
4.1 Findings 10

4.1.1 NDT-001 — All Communication Is Unauthenticated 10

4.1.2 NDT-002 — Basic Compiler Hardening Missing 11

4.1.3 NDT-003 — Unlimited Response From Query_mlabns 12

4.1.4 NDT-004 — Asserts Used for Security Checks 12

4.2 Non-Findings 13

4.2.1 NF-001 — Static Checks 13

4.2.2 NF-002 — Checking Heap Operations 14

4.2.3 NF-003 — Fuzzing of the JSON Engine 14

5 Future Work 15

6 Conclusion 16

Appendix 1 Testing team 17

1 Executive Summary

1.1 Introduction

Between September 1, 2018 and September 10, 2018, Radically Open Security B.V. carried out a code audit for Open

Tech Fund.

This report contains our findings as well as detailed explanations of exactly how ROS performed the code audit.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• github.com/measurement-kit/libndt git revision: 89193025a4c59793b2f03d590efdaaea20c8cf58

1.3 Project objectives

Audit the code of libndt for security issues and proper usage of 3rd party dependencies.

1.4 Timeline

The Security Audit took place between 1st September and 10th September, 2018.

1.5 Results In A Nutshell

The usage of 3rd party dependencies appear correct. Curl is used sparingly and when it is, it's using only the high-level

abstracted interface, which is appropriate. The JSON parser seems to be rock solid after more than 10 days of fuzzing.

OpenSSL is also only used minimally, again using a high-level interface appropriately.

1.6 Summary of Findings

ID Type Description Threat level

NDT-001 Unauthenticated
Communication

Some MitM could impersonate the NDT server or inject/
modify packages in transit.

High

4 Radically Open Security B.V.

Confidential

NDT-002 Missing Compiler-based
Mitigations

Compiler hardening switches are missing from the build
scripts. These switches provide protective measures that
make exploitation harder.

Moderate

NDT-003 Resource Exhaustion The function query_mlabns() uses curl to fetch a JSON
array, which is completely unbounded and can lead to
resource exhaustion or other issues.

Moderate

NDT-004 Security Check in
Asserts

Since assert() can be disabled at compile-time by defining
the NDEBUG symbol, doing so creates many security
issues.

Low

1.6.1 Findings by Threat Level

25.0%

50.0%

25.0%

High (1)

Moderate (2)

Low (1)

Executive Summary 5

1.6.2 Findings by Type

25.0%

25.0% 25.0%

25.0%

Unauthenticated communication (1)

Missing compiler-based mitigations (1)

Resource exhaustion (1)

Security check in asserts (1)

1.7 Summary of Recommendations

ID Type Recommendation

NDT-001 Unauthenticated
Communication

Authenticate all messages at the protocol level, or enforce TLS and provide a
hard-coded CA for verifying TLS certificates.

NDT-002 Missing Compiler-based
Mitigations

Enable hardening switches in the build scripts.

NDT-003 Resource Exhaustion Limit the size of the reply and abort if excessive data is received, or if the
received response does not parse due to missing terminators.

NDT-004 Security Check in
Asserts

Review and replace all security-relevant asserts with code that cannot be
disabled.

6 Radically Open Security B.V.

Confidential

2 Methodology

2.1 Planning

Our general approach during this code audit was as follows:

1. Code reading

We read through all the code, in multiple phases we first read through sequentially to get a feel for the code, then

in a second round we go through the code in the logical order the code is executed.

2. Grepping

We attempted to identify areas of interest by searching for memory operations: new, delete, malloc, calloc, realloc,

gralloc, free.

3. Static checks

We also used two automated tools, flawfinder and cppcheck, to look for issues. Besides lots of false positives

cppcheck came up with some compiler optimization recommendations.

4. Fuzzing

For good measure we tried to fuzz the most exposed component - the JSON engine.

2.2 Risk Classification

Throughout the document, vulnerabilities or risks are labeled and categorized as:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 7

Please note that this risk rating system was taken from the Penetration Testing Execution Standard (PTES). For more

information, see: http://www.pentest-standard.org/index.php/Reporting.

8 Radically Open Security B.V.

Confidential

3 Reconnaissance and Fingerprinting

Through automated scans we were able to gain the following information about the software and infrastructure. Detailed

scan output can be found in the sections below.

3.1 Automated Scans

As part of our active reconnaissance we used the following automated scans:

• flawfinder – https://www.dwheeler.com/flawfinder/

• cppcheck – http://cppcheck.sourceforge.net/

• clang-analyzer – https://clang-analyzer.llvm.org/

Reconnaissance and Fingerprinting 9

4 Pentest Technical Summary

4.1 Findings

We have identified the following issues:

4.1.1 NDT-001 — All Communication Is Unauthenticated

Vulnerability ID: NDT-001

Vulnerability type: Unauthenticated Communication

Threat level: High

Description:

Some MitM could impersonate the NDT server or inject/modify packages in transit.

Technical description:

All NDT messages are unauthenticated. The only exception if TLS is enabled, but this seems optional. For strong

adversaries who are in a MitM position and also have their own CA which is included in most Operating Systems

Certificate Authority stores, even this is not a big hurdle. Since NDT is about discovering and evaluating MitM

adversaries this is a significant issue.

Impact:

A MitM attacker could DoS unrelated 3rd parties or to fake results with its own NDT server.

Recommendation:

Authenticate all messages at the protocol level, or enforce TLS and provide a hard-coded CA for verifying TLS

certificates.

10 Radically Open Security B.V.

Confidential

4.1.2 NDT-002 — Basic Compiler Hardening Missing

Vulnerability ID: NDT-002

Vulnerability type: Missing Compiler-based Mitigations

Threat level: Moderate

Description:

Compiler hardening switches are missing from the build scripts. These switches provide protective measures that make

exploitation harder.

Technical description:

No hardening switches are enabled at all, a generic set of switches for linux-based systems might be:

-D_FORTIFY_SOURCE=2

-fstack-protector-strong

-Wformat

-Werror=format-security

-Wl,-z,relro,-z,now

-Wconversion -Wsign-conversion

-mmitigate-rop

-ftrapv

On Windows-based systems these switches might be useful:

/DYNAMICBASE

/SafeSEH

/GS

/NXCompat

For more detailed information consult https://www.owasp.org/index.php/C-Based_Toolchain_Hardening

Impact:

If vulnerabilities are found, the lack of these protections makes exploitation cheaper and easier.

Recommendation:

Enable hardening switches in the build scripts.

Pentest Technical Summary 11

4.1.3 NDT-003 — Unlimited Response From Query_mlabns

Vulnerability ID: NDT-003

Vulnerability type: Resource Exhaustion

Threat level: Moderate

Description:

The function query_mlabns() uses curl to fetch a JSON array, which is completely unbounded and can lead to

resource exhaustion or other issues.

Technical description:

Unlike the rest of the code query_mlabns() uses curl to download a list of servers, and unlike the rest of the code this

network traffic is unbounded, an adversary could send a huge response exhausting local resources or possibly redirect

traffic to unrelated 3rd parties effectively DoS-ing them.

Impact:

The client could run out of memory, or consume lots of network traffic, possibly even initiating connections to unrelated

3rd parties.

Recommendation:

Limit the size of the reply and abort if excessive data is received, or if the received response does not parse due to

missing terminators.

4.1.4 NDT-004 — Asserts Used for Security Checks

Vulnerability ID: NDT-004

Vulnerability type: Security Check in Asserts

Threat level: Low

12 Radically Open Security B.V.

Confidential

Description:

Since assert() can be disabled at compile-time by defining the NDEBUG symbol, doing so creates many security

issues.

Technical description:

Some examples from the code to show the problem:

1239: assert(fqdns != nullptr);

or

3391: assert(base != nullptr && actual != nullptr);

Impact:

Compilation with -DNDEBUG can introduce security bugs.

Recommendation:

Review and replace all security-relevant asserts with code that cannot be disabled.

4.2 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.2.1 Static Checks

A number of static checks were performed:

• clang-analyzer: did not find anything

• flawfinder: found a few false-positives

• cppcheck: found a few possible compiler optimizations (e.g. static or const modifiers to functions or parameters)

Recommendation: subscribe to the free tier of Coverity for free software and regularly run scans with them.

Pentest Technical Summary 13

4.2.2 Checking Heap Operations

A major issue with C/C++ programs is incorrect heap usage, so we explicitly check this aspect in code audits. In this

case we could not find any invocations of new(), delete(), malloc(), realloc(), calloc() or free(). A few

invocations of SSL_free() were spotted, but those seem to be used correctly.

4.2.3 Fuzzing of the JSON Engine

For good measure we fuzzed the JSON engine used in libndt. In total we ran AFL for more than 10 days on 8 dedicated

CPUS, totalling in more than 66K cycles and more than 11G invocations of the JSON parser, this effort did not find any

crashes.

14 Radically Open Security B.V.

Confidential

5 Future Work

• Fuzz the websocket implementation.

Since libndt contains a homebrew implementation of a websocket client it makes sense to fuzz this specifically.

• Apply to the Free Software program of Coverity

Have the code regularly checked by Coverity for newly introduced bugs.

• Consider amending the NDT protocol so that all messages are authenticated.

As the goal of NDT is to uncover MitM attackers interfering with network traffic the lack of authentication makes

NDT an easily circumvented and abused tool for exactly the adversaries it tries to detect.

Future Work 15

6 Conclusion

The audited code is a small, well-written library with only a small scope, written in modern C++ with good inline

documentation. Very few issues were identified and are either minor and difficult to trigger or of a cosmetic nature. The

only serious issue is that the NDT protocol itself is unauthenticated and allows MitM attackers to arbitrarily interact with

the tests conducted. This is especially concerning as the purpose of these tests is to identify MitM interfering with the

traffic.

Finally, let us emphasize that security is a process, and this audit is just a single snapshot. Security must be continuously

evaluated and improved. Regular audits and ongoing improvements are essential in order to maintain control of your

corporate information security. We hope this pentest report (and the detailed explanations of our findings) will contribute

meaningfully towards that end.

Do not hesitate to let us know if you have any further questions or need further clarification of anything in this report.

16 Radically Open Security B.V.

Confidential

Appendix 1 Testing team

Stefan Marsiske Stefan runs workshops on radare2, embedded hardware, lock-picking, soldering,
gnuradio/SDR, reverse-engineering, and crypto topics. In 2015 he scored in the top 10
of the Conference on Cryptographic Hardware and Embedded Systems Challenge. He
has run training courses on OPSEC for journalists and NGOs.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Testing team 17

